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Abstract

In areas as diverse as remote sensing, astronomy, and medical imaging, image acquisitiorl
technology has undergone tremendous improven]ents  in recent years in terms of imaging reso-
lution, hardware miniaturization, and computational speed. For example, current and future
near-cartb and planetary observation systems will return vast amounts of scientific data, a po-
tential treasure-trove for scientific investigation and analysis. Unfortunately, advances in our
ability to deal with this volume of data in an effective manner have not paralleled the hardware
gains. While special-purpose tools for particular applications exist there is a dearth of useful
general-purpose software tools and algorithms which can assist a scientist in exploring large sci-
entific image databases. At JP1, we are currently developing interactive serni-autornatcd  irrlage
database exploration tools based on pattern recognition and machine learning technology. In
this paper wc discuss the general problcm  of automated image database exploration, the par-
ticular aspects of image databases which distinguish thex~l  frorr)  other databases, and how this
impacts the application of off-the-shelf learning algorithms to proble~lls  of this nature. Current
progress will be illustrated using two large-scale image exploration projects at JF’1,. T’hc paper
concludes with a discussion of current and future challcngcs,



1 lntmcluction

1.1 IIackgrounc]  and  M o t i v a t i o n

in a variety of scientific disciplines two-dimensions] digital image data is now relied on as a, basic
ccJ1llponent  of routine scientific investigation. ?’he proliferation of image acquisition hardware such
as mu]ti-spectral remote-sensing platforms, medical imaging sensors, and high-resolution cameras
have ICCI to the widespread use of ilnage data in fields such as atmospheric studies, planetary geology,

ecology, agriculture, g]acielogy,  forestry, astronomy, diagnostic medicine, to name but a, few.
Across all of these disciplines is a common factor: the image data for each application, whether it

be a I,andsat image or an ultrasound scan, is but a means to an end in the sense that the investigator
is only inierestcd in using the image data to infer some conclusion about the physical properties of
the mediunl being imaged. ]n this sense, the image data serves as an intermediate representation

to facilitate the scientific process of inferring a conclusion from the available evidence. g’his ]night
seeln  like  an obvious observation. Yet it could be argued that in many practical cases the process
of acquiring and storing the images is seen as an end in itself and the subsequent image analysis is
relegated to a minor role. Certainly this accusation could be made in the past of NASA’s planetary
science endcavours,  where most of the resources were expended in the process of acquiring the
data and relatively little consideration was given to how the data would actually be used after the
lllission was complete (e.g. see 1992 Congress report on Earth observing System in this regard).

IIowever,  the climate of image acquisition and analysis is changing rapidly. In the past, in
planetary science for example, inlage databases were analyscd in a careful manual manner and
much investigative work was  carried out using hard copy photographs. Ilowcvcr, due tc) the sheer
enornlit,y of the image databases currently being acquired, simple manual cataloging is no longer
a practical consideration if all of the available data. is to be utilised. As an example, consider
the Magellan mission to Venus. ‘l’he Ma.gclla.n spacecraft transl!littecl  back to earth a. data, set
consisting of over 30,000 high resolution radar inla.gcs  of the Venusian surface. I’his data, set is
greater  than that  gathered by al l  previous planetary nlissions colnbincd -  planetary scientists
are literally swamped by data, Venus is an extremely volcanic planet (volcanoes arc by far the
single ItLost visible geologic feature in the Magellan data set), hence, the study of basic volcanic
process is essential to a basic undcrstanc]ing  of the geologic evolution of the planet [1 I]. Central
tc) volcanic studies is the cataloging of each volcano location ant] its size ant] characteristics –-
there arc estimated to be on the order of 106 visible volcanoes scattered throughout the 30,000
images [2]. It has been estilnated that manually locating all of these volcanoes would require 0]1
the order of 10 nlan years of a planetary geologist’s time to carry out - even then, a further search
would be required to fully characterise the shape and appearance of each volcano. Given a catalog of
volcanoes and t}leir  characteristics, a scientist can usc  the data to support various scientific theories
and analyses. For example, the volcanic spatial clustering patterns may bc correlated with other
known and mapped geologic features such as mean planetary radius, which may provide evidence
either pro or con particular theories of planetary history.

1 . 2  Sco~)c and (lutlille

‘l’he Magellan-Vmlus  data set is an cxanlple of a currently falniliar pattern in the renlote-sensing
and astronomy communities – a new ixnage data set becomes available but the size of the data
set prcc]ucles  the usc  of sinlp]c  ]Ilanual  ]nethods  for exploration. Ilcnce, scientists are beginning to
express a. need for automated tools which can assist t}~e~n in naviga.tillg through large sets of in]ages.
A cc)lnmc)nly expressed wish is the follc)wing: “is there a tool where 1 cc)uld just poil~t at an object
on the screen (or even draw a caricature of it) and then have the algc]rith~[l find  sixrlilar  items in
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the database?” Some scientists even have pre-conceived  notions that neural networks or SOIIIC  other
currently fashionable technology already provide a pre-packaged solution to their problcml- we will
argue that no such domain independent tools exist.

Note that in this paper the type of problem being addressed differs from the types  of problems
typically addressed by classical work in machine vision. Machine vision work has focused primarily
on inlagc understanding, parsing, and seg~nelltation,  with a particular emphasis on detecting and
a.nalysing  man-made objects in the scene of interest. The focus of this paper is on the detection of
natural, as opposed to man-made,  objects. q’he distinction is important because, in the context of
inlage analysis, natural objects tend to possess much greater variability in appearance than man-
made objects. Hence, we shall focus primarily on the use of algorithms that ‘(learn by example”
as the basis for image exploration. The primary alterl~ative, the model-based approach will not
be dealt with except in passing. !l’he  “lear~l b y  examp]e” approach is potentially mc>rc generally
app]icablc since domain scientists find it relatively easier to provide exalnples of what they are
searching for compared to describing a model. IIowever,  the distinction between prior Inode]s  ancl
learning by example should be viewed as two cmds of a continuous spectrum rather than dichotomous
points of view.

Using ongoing JPL projects as examples, the paper will examine the applicatic)n of pattern
recognition and machine learning technology to the general problcm of image database exploration.
In particular, it will bc argued that image databases possess unique characteristics which ilnpa,ct the
direct application of standard learning methods. Feature extraction frolrl  pixels, spatial context
modclling, limited ground truth, the availability of prior knowledge, and the use of supervised
feedback during learning are all comnlon aspects of the problerrl  which can either help or hinder
the development of learning tools. Rach of these issues will be discussed in the context of currently
available ]carning theories and algorithms and recent progress and opportunities fc]r significant
improvements will be outlined.

2 ‘Two Illustrative Case Studies

q’o ground the discussion in this paper,  we provide two illustrative examples of current projects
at JP1, involving the development of ilnage exploration algorithms and tools. l’he first is an
already sucessful application of decision tree learning to classification in the context of a well
understood image analysis problem. l’he second project represents ongoing work which targets
a more anlbitious problem of dealing with dortla.ins  where the basic inlagc processing itself is not
straightforward.

2.1 SKI CA’1’: Automated Astronomy Sky Survey Cataloging

The first example consists of an application of machine learning techniques to the automation
of the task of cataloging sky objects in digitized sky images. ‘l’he Sky image Classification and
Archiving ‘JIool (SKICAT) has been developed for usc  on the images resulting from the 2nd ]’dOIllZLT

Observatory Sky Survey (POSS-11)  conducted by the California ]nstitute of ‘1’ethnology (Caltech).
‘l’he photographic plates collected fro~n the survey arc being digitimc]  at the Space l’elescope Science
Institute (S1’SC1).  ‘l’his process will result in about 3,000 digital images of roughly 23,000x23,000
pixclsl each. The survey consists of over  3 tcr-abytcs of data cc)ntaining on the order of 107 galaxies,
1 08 stars, and 105 quasars.

1 Each pixel consists of 16 bits and represents the intensity in one of three colors.



q’hc first step in analyzing the results of a sky survey is to identify, measure, and catalog the

detected objects in the image into their respective classes. Oncc the c)bjects  have been classified,
further scientific analysis can proceed. For  example,  the resul t ing catalc)g  Inay be used to test
mcldcls  of the formation of large-scale structure in the universe, probe galactic structure from star
counts, perform automatic identifications of radio or infrared sources, and so forth. ~’he task of
reducing the images to catalog entries is a laborious till~c-ccJ1lsuI1lir~g  process. A manual approach
to constructing the catalog implies that many scientists need to expend large amounts of time on
a visually intensive task that may involve significant subjective judgnlcnt.  The goal of our project

is to automate the process, thus alleviating the burden of cataloging objects from the scientist and
providing a more objective methodology for reducing the data sets. Another goal of this work is
to classify objects whose intensity (isc~photal  ]nagnitude)  is too faint for recognition by inspection,
hence requiring an automated classification procedure. Faint objects constitute the majority of

objects on any given plate. We target the classification of objects that arc at least one magni tude

fainter than objects classified in previous surveys using comparable photographic material.
q’he learning algori thms used in  SKIC~l’  arc the GII13*  [8] and O-13tree  [9]  decis ion t ree

generation algorithnls. IT1 order to overcome limitations inherent in a. decision tree approach, we
use the RUI, F,R [10] system for deriving statistical cross-validated classification rules from multiple
(typically > 10) decision trcm. ‘l’he details of the learning algorithms arc beyond the scope of this

paper and are therefore not covered here. For details of how rules are generated from multiple

decision trees, and for comparisons with neural net performance, the reader is referred to [1 0].

2.1.1 Attribute Measurement

A manual approach to classifying sky objects in the images is infeasible. Existi]lg colnputational
methods for processing the images will preclude the identification of the majority of objects in each
inla.ge  since they arc at levels  too faint (the resolution is too low) fclr traditional recognition aJgo-
rithlns or even methods based on manual inspection or analysis. now-level image processing ancl

object separation is performed by the public domain FOCAS ilnage processing software developed
at Bell Labs [16, 29]. In addition to detecting the objects in each image, FOCAS also produces
basic attributes describing each object. g’hesc  attributes are fairly sta.nclard  in Astronomy ancl rep-

resent commonly measured quantities such as area, magnitude, several statistical uloments  of core
intensity, cllipticity, and so forth. Additional norxnalized attributes were measurecl later to achieve
accuracy requirements and provide stable performance over different plates (see the discussicm  in
Section 3.1 ). In total, 40 attributes are lrleasured by SKICA1’  for each detected object.

2.1.2 Classifying Faint Objects and the lJsc of CC]) ln)ages

In additic)n to the scanned photographic plates, we have access to CC1)  ilnages that span several

tiny regions in some of the plates. The main advantage of a CC]) image is higher  resolution and
signal-to-noise ratio at faintm levels. IImlce, many of the objects that are too faint to be classified
by inspection of a photographic plate, are easily classifiable in the corresponding CCI) image (jf

available). We make use of the CC]) images in two very important ways:

1. CCD images enable us to obtain class labels fc)r faint c)bjects  in the photographic platcx.

2. CCD images provide us with the means to reliably evaluate the accuracy of the classifiers
obtained froln the decision tree learning algorithms.

In order to produce a classifier that classifies faint objects correctly, t}~e learning algorith~n needs
training data consisting of faint objects labeled with the appropriate class. ‘1’he  class label ;s
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therefore obtained by examining the CC]) frames. Once trained on prc)perly  labeled objects, the
learning algorithm produces a classifier that is capable c)f properly classifying objects based on
the va.lucs of the attributes provided by F’OCAS.  ]lence, in principle, the classifier will be able to
classify objects in the photographic image that are simply too faint for an astronomer to classify by
inspection of the survey images. Using the class labels, the learning algorithms are basically being
used to solve the more difficult problem of separating the classes in the multi-d  ilncmsiona~ space
defined by the set of attributes derived via image processing. g’his method allows us to classify
objects at least one magnitude fainter than objects classified in photographic sky surveys to date.

2.1.3 R e s u l t s

It is important to point out that without the additional attributes described in Section 3.1, none of
the learning methods achieved better than 7570 accuracy. As expected, defining the new ‘(nornlal-
ized” attributes raised our perforrrlance  on both intra- and inter-plate classificatic)n  tc) accep tab le
levels varying between 9’2% and 98% accuracy with an average of 94%. Our encoding of these

attributes represents an implicit imparting of more domain knowledge to the learning algorithm.
q’he SKICA1’  system is expected to speed up catalog generation by one to two orders of nlagni-

tude over traditional manual approaches to cataloging. This should significantly reduce the cost of
cata.logillg survey images by the equivalent of tens of astronomer man-years. In addition, SKI CAT
classifies objects that are at least one magnitude fainter than objects cataloged in previous surveys
We have exceeded our initial accuracy target of 90%. l’his level of accuracy is required for the data
to be useful in testing or refuting theories on the formation of large structure in the universe and
on other phenomena of interest to astronomers.

The catalog generated by SKICA’ll  will eventually contain about a billion entries representing
hundreds c)f nlillions of sky objects. Without the availability of arl automated tool like SKICA’ll  for
the first survey (P OSS-1)  conductec]  over  4 decades ago, only  a s~r]all percentage of the data was

used and only specific areas of interest were studied. In contrast, we arc targeting a. comprehensive
sky catalog that will be ava.ilablc  on-line for the use of the scientific coll]Ttlunity.  IIccause  we earl
classify object that are one magnitude fainter, the resulting catalog will be significantly richer in
ccmtcnt, containing three times as Ina.ny  sky objects as would have been possible without using
SKICAg’.

As part of our plans for the future we plan tcl begin investigation of the applicability of unsu-
pervised learning (clustering) techniques such as AU’1’OC1,ASS [4] to the problem of discovering
clusters or groupings of interesting objects. ‘l’he initial goals  will be to answer the following two
questions:

1. Are the classes of sky objects used currwntly  by astronomers justified by the data: do they
naturally arise in the data?

2. Are there other classes of objects that astronomers were not aware of because of the cliiliculty
of dealing with high dimensional spaces defined by the various attributes? F,sscntially this is
a discovery problem.

2 . 2  VolCano  l)etection  in Magcllan-VCnus  l)ata

‘l’he Magellar~-Venus data set  cc~nstitutes  an example of the large vc)lu~ncs of data. that tcjday’s
instruments can collect, providing more detail of Venus than was previously available frolll  l’io-
ncer Venus, Vcnera 15/16, or ground-based racla.r observatic)ns put together [24]. We are initially
targeting the autolnated detection of the “slnall-shield”  vcdcanoes  (less than 15km in diameter)
that constitute the nlost abundant visible geologic feature [15] in the IIlore  that 30,000 synthetic
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aperture radar (S AR) images of the surface of Venus. It is estin~ated, based on extrapolating from
previous studies and knowledge of the underlying geologic processes, that there should be on the
order of 105 to 106 of these volcanoes visible in the Magel]an data [2, ]4].

Identifying and studying these volcanoes is fundamental to a proper understanding of the ge-
ologic evolution of Venus. However ,  locat ing and pararneterizing  them in a n]anual manner is

forbiddingly time-consuming. Hence, we have undertaken the development of techniques to par-

tially automate this task. The primary constraints for this particular pr-oble]n are that the method
must be reasonably robust and fast. Unlike most geological features, the small volca,nocs  can be
ascribed to a basic process that produces features with a short list of readily defined characteristics
differing significantly from other surface features on Venus [1 5]. For pattern recognition purposes
the relevant criteria include (1) a circular planimetric outline, (2) known diameter frequency distri-
bution from preliminary studies, (3) a limited null~ber  of basic morphological shapes, and (4)  the
common occurrence of a single, circular summit pit at the center of the ecliilce.

2.2.1 ‘l’lie Approach

There has been little prior work on detecting naturally occurring objects in remotely-sensed images.
Most pattern recognition algorithms are geared towards detecting straight edges or large changes
in texture or reflectivity. While this works well for detecting rnan-rnade  objects, appr-oachcs  such as
edge detection and Hough transforms deal poorly with the variability and noise present in typical
relnotely  sensed data [6, 20].

our initial work in this problem has relied on the concept of using a focus of attention (1’OA)

method to detect regions of interest followed by local classification of regions of interest into volcano
and non-volcano categories. l’he focus of attention component is designed primarily for cornpu-
tationa.1  eficiency. Its function is to quickly scan an input image and roughly deterlnine regions
of interest (regions potentially containing objects similar to those specified by the scientist). For
this purpose we have used a constant false alarm rate detector which compares the intellsity  of a.
centre pixel with a locally adaptive estimate of the background intensity: if the central intensity is
larger than some number of standard deviations from the background Irlean  intensity, the region
is considered detected. By running this detector at multiple resolutions of the ilnage, it can detect
both volcanoes at different scales and difl’erent  features of the volcanoes [26]. Fc]r exalnp]e, at high
resolution it picks up the summit pit, while at lower resolutions the bright slopes can be detected.
False alarms are caused by craters, grabens, and other bright features in the data.

Given a set of detected regions of interest, the remaining task is to discriminate between the
volcanoes and false alarms. A current focus of the research is to find a useful feature-representation
space - although nearest neighbour classifiers provided reasc)nably accurate results (see section
2.2.2 below), a representation based purely on pixels will tend to generalize poorly. For the purposes
of incorporating prior knowledge the ideal feature set would  be expressec]  in the for~ll of expected
sizes, shapes, and relative geometry of slopes and pits, namely, the same features as used by the
scientists to describe the volcanoes. }Iowever,  due to the low signs.1-to-nc)ise ratio of the image, it
is quite difficult to gain accurate measurements of these features, effectively precluc]ing their use at
present. q’he current focus of our work is on a method which automatically derives robust feature
representations - this will be described in Section 3.1.

2.2.2 Current Status and l’rcliminary  ]Lesults

We have constructed several training sets using ‘/5m/pixel resolution il[lages  lahellecl  by the collab-

orating geologists at Brown University to get an initial estimate of the perforl[lance of the system.
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‘l’he FOA component, typically detects more than 80% of all the volcanoes, while gcneratirrg 5-6

times as many false alarms. Using the nearest neighbour  classifier, we can classify the regions of in-
terest into volcanoes and false alarms with an estimated accuracy of 81 Yo. Similar accuracy results
arc reported in [31]. It is important to clarify that these are initial results and with further eflort
wc hope to be able to significantly improve the accuracy, Demonstrating the general applicability
of this approach to the detection of other Venusian features as well as images from other missions
will be the next step. So far the emphasis has been placed mainly on developing the computer
tools to allow scientists to browse through images and produce training data sets (as well as partial

catalogs) within a. single integrated workstation environment.

3 The Role of Prior Information

]n general, prior inforrna.tion can be specified in two ways. ‘l’he first is in terms of relatively high-level
knowledge specifying expectations and constraints regarding certain characteristics of the objects of
interest. For example, in the Magellan-Venus  problem the incidence angle of the synthetic aperture
radar instrument to the planet’s surface is known, which in turn strongly influences the relative
positions of bright and dark slope and summit regions for a given volcano [19].

q’he second type of prior information which we consider here is normally not thought of as such
This is the information which is implicitly specified by the labelled data, i.e., the data which has
been examined by the domain expert and annotated in some nlanner.  While one normally thinks
of the labelled data and the prior knowledge as two separate entities, it is convenient in practice tc~
consider both the knowledge and data forms of prior information within the salne context.

One must determine the degree of utility of each type of information in designing an exploration
algorithm. For example, in the SKICA1’  project, the prior knowledge was quite precise and helped.
a great deal in terms of dcterm~ining  the optilrlal features to use for the problem. In cc)ntrast, for the
Magellan-Venus  problem, the prior knowledge is quite general in nature and is not easily translatable
into algorithmic constraints. Hence, thus far, the most effective source of prior information has
been the labelled training examples provided by the scientists.

Below  we consider two important aspects of prior inforlnation. ‘l’he first addresses the issue of
deriving suitable higher-level representations from the raw pixels. ‘_J’he second issue concerns the
nature of the labelled data provided by the domain expert.

3.1  Pixe] Data v e r s u s  I’eature  l)ata

Raw pixel data is rarely useful or of interest to users. Humans typically perform some sort of
pixel-to-feature mapping immediately. In scientific data analysis domains, where the user typically
knows the data well and has a list of defined features, using this knowledge makes the learning task
significantly easier. SK ICMI1 provides an excellent example of this. Not only was the segmentation
problem (locating objects) easy to perforln, but we had access to a host of defined attributes that
we made use of effectively. IIaving  the proper representation lnade the difference between success
and failure in that case.

In order for SKICNI’  to achieve stable classification accuracy results on classifying data frolrl
difierent plates, we had to spend some effort defining norlnalized attributes that arc less sensitive
to plate-to-plate variation. q’hese  at t r ibutes are colnputed  auton)atical]y  frolr) the c]ata, and are

defined such that their values would be normalized across images and plates. Many of these quanti-
ties (although not all) have physical interpretations. Other quantities we measured invc~lvecl fitting
a template to a set of “sure-stars” selected by the astronomer for each ilrlage, and then measuring
the rest of the objects with respect to t}lis telnplate. In order to autolnate  the nleasure~rlent of such
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Figure 1: An Example Magellan ]mage of Venus.

attributes, we automated the “sure-star” selection problem by treating it as a learning sub-problem
and building decision trees for selecting “sure-stars” in an arbitrary imagez,  It is beyond the scope

of this paper to give the detailed definitions of the attributes. ‘l’he point is that in this case a
wealth of knowledge was available to us in terms of ~attributes (nleasuren~ents),  while astronolners
had little knowledge  of how to usc these attributes to classify objects.

On the other hand, in the case of Magellan SJ\R images , t h e  inlage seglnentation prohlenl

(object detection) is significantly more difl;cult to address. In general, one needs tc, address the

problem of automatic feature (attribute) construction. One approach wc have been experimenting
with for this purpose is the use of principal component analysis. ltach training exalnple (subimage
containing posi t ive exan]ple) can  be turned into a vector of pixel  values. q’he entire training set
will thus form a k2 x 71 ma.trix3  which can  subsequently be decomposed into a set of orthonornlal
eigenvectors using singular value decomposition (SVD).  An eigenvalue is associated with each of
the vectors indicating its relative importance. When the eiguevectors (eigenvolcanoes)  are viewed
as images again ~ we note that each represents a “basic” feature c)f a volcano. Figure 1 shows

an example Magellan Venus image with a few volcanoes showing. Figure 2 Shows the associated
eigenvolcano  features ordered left to right by decreasing eigenvalues. Note that the eigenvectors

become less coherent starting with the sixth or seventh feature.
The eigenvolcanoes  can be viewed as general features that can be used to encode each detected

candidate volcano for classification purposes. “1’his is an example of an auto~llatic ten~p]ate (matched
filter) generation procedure which can easily be auglrlented by other features pro~ided by the expert
user.
. .

2’1’his tur],s  out to be a relatively easy learning task, our accuracy on this subproblel[,  exceeds 98~0.
‘Assume  that there are n exanlples, each of which consists of a k x k pixel subin, age.

-1’



from l’ra.ining  Data.

3 . 2  Supcrvisecl  l“ccdback  a n d  t h e  l,ack of Ground ‘J’ruth

lt is commonly assumed in learning and pattern recognition a.lgorithrns that the categorical class

labels attached to the training data represent ground truth. In fact, it is often the case that this is
not so and that the class labels are subjective estinlates of ground truth as provided by an expert.
‘1’he  distinction is an important one. In particular, the question arises as to whether or not the
expert should provide his or her best guess at the class label of each exemplar, or instead should
provide some quantitative estimate of the likelihood that the exemplar is a member of some class,
Smyth [27] has shown that virtually all well-known learning algorithms can  be easily modified to
handle such probabilistic labels if one assumes that the expert is providing true unbiased estimates
of the likelihoods. In pract ice, however  such subject ive esti~nates are likely to be biased and
inconsistent - it is quite difficult to accurately elicit subjective probabilities from even the most

cooperative human subject [5].
q’he volcanoes in the Magellan-Venus  data are quite ambiguous. Initially dcjmain  experts pro-

vided “hard” decisions on each example, This proved unsatisfactory since it ignored the obvi-
ous uncertainty in the more ambiguous cases. l’he current I[lethod of choice is to use quant i s ed
probability bins, three in all, each corresponding to a clearly defined and commonly agreed upon

interpretat ion. Both for model development and for accurate model calibration, even the simple
quantised probabilistic estimates have been a significant improvenlent  over the hard decision labels.

A further complication which can arise in practice is that of Inultiple experts. g’his can mear
that each training example is subject to a different interpretation by different experts. There is a
considerable literature on various methods which colxlbine  the beliefs of different individuals [13)
- however most of these methods are of theoretical interest only since they assume that one has
an excellent model of the correlation between the experts, something which is cliff; cult to estimate
in practice. Simple linear combination techniques should give reasonable results in most cases.
In practice, for the Magellan-Venus  data, having the experts cooperate to produce a consensus
estimate for each example seems to work well.



4 Detection & Classification: Learning from Positive  Examples

A significant challenge in dealing with image databases is the management of cc)mputation over a
vcIy large nulnbcr’  of pixels. For  building an analysis tool that is to be used in real-time one cannot

afford to apply expensive measurement routines incliscriminantly.  From a practical point of view
this means that a focus of attention (FOA) method needs to be applied. Since the l’OA  needs to
be cfllcicmt,  it may generate many false alarlns. g’he task of distinguishing true from false alarln

falls on the learning algorithm. This automatically brings in the issue of whether one is learning
from only positive or from both positive and negative examples.

‘J’he user is interested in providing only positive examples. One can choose to learn only from
these examples. However, extra information can be exploited for free by allowing the learning

algorithm to learn and exploit the biases of the 1+’OA. By applying the FOA on the images from
which training data was obtained, a training set of positive and negative examples can easily be
constructed. q’his approach, however, requires that the expert dicl not nliss any positive examples in
the labcllcd image, since any objects missed by the expert are likely to be picked up by the focus of
attention detector and will be incorrectly interpreted as false alarms (this has occurred in practice
in the volcano problem where some images may contain on the order of 100 volcanoes). q’he other
disadvantage is that “negative” examples arc not really meaningful to the user. Hence, the learned
classifier will not necessarily be interpretable by the user since it is discriminating between true
examples and by-products of the FOA.

Another choice is to pcrforlll detection and classification in one step. In problems where a, com-
prehensive careful analysis is the target (as in SKICAq’),  one can perform sophisticated expensive
detection and measurement on all pixels in the data. l’his means that the system can no longer
respond in a short amount of time and also implies that methods for performing segmentation in
a reliable manner have been developed. IT~ the case of the Magellan SAR. images of Venus, no
general off-the-shelf a.lgorith]ns arc available. IIowever,  this does not rule out the usc of lIlatchcd
filters (templates) to perform both detection and classification in one step (assuming the required
co]rlputation  is practical). I)ecolIlposing the prc)blel]l  into an FOA stage followed by a classification
stage generally makes each sub-problem easier to tackle and solve.

5 Modclling Spatial Context

‘J’he two-dimensional nature of spatial data Ineans that pixel  elements in an image database are
likely to be highly correlated. Most discrimination and classification algorithms implicitly assume
that the training data they arc dealing with consists of independent randomly chosen samples from
the population of interest, e.g., a set of medical records for a hospital, Hence, in theory, they are not
directly applicable to the problelll of learning pixel classification maps (for example). Nonetheless,
Inuch  of the work in remote sensing until recently has focused on local pixel classification methods,
whereby the estimated categorical label of a pixel is purely a function of the intensity of that
pixel and independent of the properties of ncighbouring  pixels [21]. g’his purely local estimation is
non-intuitive and does not accurately reflect the human visual process whereby prior expectations
and constraints are imposed so that global spatial coherence is obtained in the final labclling.
‘J’c)  solve this, one can impose spatial smoothness constrailit,s on both the labels and the pixel
intensities. l’he most advanced such models were developed for practical applications in the mid to
latter 1980’s  under the general frarncwc)r-k  of Ma.rkov  Random Fields (M R.F’s)  [12, 23]. While the
theoretical basis of MIW”S is quite solid it is important to rcme!tlbcr  that they are primarily used
as a cor[)putaiional  convenience rather tha]l a realistic ]nodc]  of spatial interaction. Other, mc)re



global, models of spatial context have also been proposed [1, 17], again with a sound mathematical

basis.
IIowcver,  it is fair to say that ~l~uch work rcn~ains  in terms of improving image spatial mc)de]s.

There is a lack of theory on how to specify spatial models (such as MRF’s) from prior knowledge.

In particular, the parameters of the various MRF approaches must bc set by the user and can  be
quite non-intuitive - in fact, these parametcn-s  often appear to be chosen in an ad hoc lnanner.
Yet setting the parameters a priori is currently the only viable approach, since it is not possible
to learn MRF’s from data because of their non-causal nature except in special circumstances [7].
hence, frolrl  an algorithm designer’s viewpoint the situation is less than ideal when it comes to
modelling spatial interaction –- it appears that considerable experimentation and tuning is often
necessary to find the right model for a given application.

G online  IJea~nin~  and Adaptation

Another aspect of the image exploration problem is that one would ideally like to have an algorithm
which could gradually improve its performance as it explores more and more of the database. In
fact this type of incremental adaptation is a desirable feature in ~[tany practical applications but
has largely been ignored by researchers in learning and pattern recognition in favour of the simpler
problem of “one-shot” batch learning. The model representation being used critically influences
whether the model is easily adaptable or not. l)iscriminative models which focus on the differences
Letwcen categories typically have trouble adjusting to new data in an elegant manner - it may
be possible to easily adapt the paranleters of the model but not the structure (consider decision
trees as an example). Memory and prototype-based models (including parametric densities, non-
paraI1letric density esima.tors, mixture models, nearest-neighbour  models, etc. ) are naturally I[lore
suited to online adaptation - however, they typically suffer frolll  poor approximation properties
in high dimensions [25]. Hybrid models which combine the better features of discriminative and
I[lemory nlodels would appear to have promise, however, there has been little work in this area.

In practice, an online image exploration algorithnl  would work by iterative interaction with
the human user. !l’he human visual systcm of the domain expert offers an excellent c)pportunity
for supervised feedback to improve adaptation. q’his is in contrast to typical learning applications
fro]n  “flat” data where there is no obvious intuitive way  for a human labeller to visualize high-
dilnensiona]  vectors. Hence, a reasonable strategy is to have the a.lgorithlll  periodically query the
domain expert for feedback on particular examples. In a probabilistic context it can be shown
that the ~~~ost information can be gained by queries about examples which are in the areas of
greatest  poster ior  uncertainty – an algorithm can learn the most by getting feedback on the
examples it is most unsure of. l’his has the effect of making the IIIOS~ ef?icient  use of the queries

- a “blind” algorithm which produced random examples for supervised feedback wciuld quickly
exhaust the patience of any hulnan  observer. Given unlabeled exanlples,  the algorithm can perform
unsupervised adaptation such as “decision-directed” learning where the algorithm uses its current
I[lodel  to label a new example and then updates its model as if that were the correct decision. ‘l’his
can be effective in speeding convergence once an initially good llLodel is obtained but can obviously
diverge from the ideal solution if the model is inaccurate to begin with.

Yet another useful application of the online adaptation idea is the notion of selective model
refinement, i.e., allowing the user to tune the detection model froln  a genera] to a IIic)re  specific
Inc)del. For example, in the Magellan-Venus  database, there are many subclasses of volcanoes within
the general class. Ideally, the planetary scientists would like to be able to ]nodify the volcano
detection model in order to restrict the search to specific types of volcano, based on appearance or



size. l’he preference can be stated explicitly in the forln of high-level constraints (“only consider
volcanoes of diameter less than 3km” ) or can be implicitly provided in the form of examples of
the specialised concept. Once again the type of model being used critically influences the manner
by which it can be refined. For example, Irlodels  which use an explicit knowledge representation
such as decision rules can easily incorporate explicitly-specified constraints provided the language
of representation is well-matched. implicit discrinlination  models, such as neural networks, are

better suited to dealing with implicit constraints in the form of data than explicit constraints, and
can use the new data to project the existing model into subspaces  of the existing decision regions.

7’ Multi-Sensor and Derived Ma]) Data

It is relativc]y common in remote-sensing applications to image the medium at multiple  wavelengths,
thus obtaining a vector of intensities at each pixel site rather than just a single intensity. In the
Magellan-Venus  data for example, many parts of the planet were inlaged from different a.nglcs and
at different resolutions, resulting in several different data sets being available for the same surface
regions. l,ow-resolution  altimeter data was also measured providing a low-resolution map of the
mean planetary radius.

Similarly, after data has been acquired and archived, different research groups will typically
analyse the data, and produce thematic maps and catalogs (either by rna.nual  or automated means)
for different quantities of interest [3, 18]. For example, in the Magellan-Venus  database, catalogs
have already been produced for large volcanic structures and for the location of many of the large
vcdcanic  fields (but not the volcanoes within the fields).

Hence, in the general sense, each pixel can have a vector of associated attributes, whether these
are data from another sensor, or derived qualitative categories (such as a map). In principle, such
additional data should be particularly useful for computer-aided detection since it is often difi”icult
for a human user to visualize such multi-dimensional representations. Ilowever, certain technical

difficulties must be overcome for the additional data to be useful. For multi-sensor data, the
different datasets rr~ust usually be registered so that the pixel measuren]ents  are sonlehow aligned
to reference the same surface point - inevitably this is an imprecise process and spatial errors
result. For qualitative map data one would like to ascertain the reliability of the map categories. It
would be extremely useful if the map data contained not only the category label but also the degree
of confidence (“spatial error bars”) in that labelling. ~’his is IIot done in subjective manual  nlapping

for the obvious reason that the elicitation of such error bars would be a tedious and inaccurate
process. However, automated map-making tools in general should provide some self-calibrated
estimate of the reliability of the decision at each pixel or region of interest - algorithlns based on

probabilistic models (such as I?ayesian methods) automatically provide such information.

8 Conclusion

Natural object detection and characterization in large image databases is a generic task which
poses many challenges to current patter-n recognition and machine learning methods. ~’his paper
has briefly touched on a number of relevant issues in problems of this nature: prior information,
deriving features from pixel data, subject ive labelling, learning froIIl positive exaInples, nlode]s
for spatial context, online learning, and multi-sensor and thematic data. There are other issues
which were not discussed here due to space constraints: t})e use of physical noise nlodels for the
radar inlaging processes and other ncm-visible  wavelengths, the integration of multiple images of the



same surface area taken at diflerent times, and the use of multi-resolution and parallel  a lgori thms
to speed computation.

The SKICA’I’ and Magellan SAR projects are typical examples of the types of large-scale image
database applications which will become increasingly conlmon - for example, the NASA Earth

Observing System Synthetic Aperture Radar (EOS SAR) satellite will generate on the order of 50
GHytes of remote sensing data per hour when operational [30]. ]n order for scientists to be able
to effectively utilise these extremely large amounts of data., basic image database navigation tools
will he essential.

Our existing JPI, projects have so far demonstrated that efticient and accurate tools for natural
object detection are a realistic goal provided there is strong prior knowledge about how pixels can
be turned into features and froln there to class categories. With the astronomy problem there was
sufhcient  strong knowledge for this to be the case: with the volcano data, the knowledge is m u c h
less precise and consequently the design of effective object detection tools is considerably more
difiicult.

q’he colnnlon thread across the various issues would appear to be the problem of how to combine
both prior knowledge and data. Much of the prior knowledge of a domain scientist is vague and
imprecise and cannot be translated easily into pixel-level constraints. llowever,  scientists find it
significantly easier to provide attributes to measure on a given region than to specify the method
they usc  to classify the region.

Dealing with image data is uniquely appropriate for interactive tools since results can immedi-
ately be visualized and judged by inspection. This Inakes obtaining feedback and training data frOIIl
users much easier. Since humans find it particularly difficult to express how they perform visual
detection and classification, using a ‘(learning from examples” approach becolnes  particularly approp-
riate. The fact that the image databases are becoming increasingly conlmon  and unmanageably
large makes the need for the type of approaches advocated in this paper particularly pressing.
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